Thursday, 21 November 2013
On 16:03 by Asveth Sreiram No comments
"This work is significant in that it demonstrates an application of graphene that cannot be achieved using conventional materials," Hone says. "And it's an important first step in advancing wireless signal processing and designing ultrathin, efficient cell phones. Our devices are much smaller than any other sources of radio signals, and can be put on the same chip that's used for data processing."
Graphene, a single atomic layer of carbon, is the strongest material known to man, and also has electrical properties superior to the silicon used to make the chips found in modern electronics. The combination of these properties makes graphene an ideal material for nanoelectromechanical systems (NEMS), which are scaled-down versions of the microelectromechanical systems (MEMS) used widely for sensing of vibration and acceleration. For example, Hone explains, MEMS sensors figure out how your smartphone or tablet is tilted to rotate the screen.
In this new study, the team took advantage of graphene's mechanical 'stretchability' to tune the output frequency of their custom oscillator, creating a nanomechanical version of an electronic component known as a voltage controlled oscillator (VCO). With a VCO, explains Hone, it is easy to generate a frequency-modulated (FM) signal, exactly what is used for FM radio broadcasting. The team built a graphene NEMS whose frequency was about 100 megahertz, which lies right in the middle of the FM radio band (87.7 to 108 MHz). They used low-frequency musical signals (both pure tones and songs from an iPhone) to modulate the 100 MHz carrier signal from the graphene, and then retrieved the musical signals again using an ordinary FM radio receiver.
"This device is by far the smallest system that can create such FM signals," says Hone.
While graphene NEMS will not be used to replace conventional radio transmitters, they have many applications in wireless signal processing. Explains Shepard, "Due to the continuous shrinking of electrical circuits known as 'Moore's Law', today's cell phones have more computing power than systems that used to occupy entire rooms. However, some types of devices, particularly those involved in creating and processing radio-frequency signals, are much harder to miniaturize. These 'off-chip' components take up a lot of space and electrical power. In addition, most of these components cannot be easily tuned in frequency, requiring multiple copies to cover the range of frequencies used for wireless communication."
Graphene NEMS can address both problems: they are very compact and easily integrated with other types of electronics, and their frequency can be tuned over a wide range because of graphene's tremendous mechanical strength.
"There is a long way to go toward actual applications in this area," notes Hone, "but this work is an important first step. We are excited to have demonstrated successfully how this wonder material can be used to achieve a practical technological advancement -- something particularly rewarding to us as engineers."
The Hone and Shepard groups are now working on improving the performance of the graphene oscillators to have lower noise. At the same time, they are also trying to demonstrate integration of graphene NEMS with silicon integrated circuits, making the oscillator design even more compact.
For this study, the team worked with research groups from the School's Departments of Mechanical Engineering, Electrical Engineering, and Physics. This work is supported by Qualcomm Innovation Fellowship 2012 and the U.S. Air Force, using facilities at the Cornell Nano-Scale Facility and the Center for Engineering and Physical Science Research (CEPSR) Clean Room at Columbia University
.
.
Subscribe to:
Post Comments (Atom)
Search
Popular Posts
-
A team of scientists using NASA's Hubble Space Telescope has made the most detailed global map yet of the glow from a planet orbiti...
-
Aug. 29, 2013 — The age at which children learn a second language can have a significant bearing on the structure of their adult brain, ...
-
Nov. 2, 2013 — It doesn't take a Watson to realize that even the world's best supercomputers are staggeringly inefficient and ene...
-
Oct. 3, 2013 — Scientists have revealed nearly 100 genetic variants implicated in the development of cancers such as breast cancer and pr...
-
Nov. 1, 2013 — It was once thought that each cell in a person's body possesses the same DNA code and that the particular way the geno...
-
Oct. 30, 2013 — Video gaming causes increases in the brain regions responsible for spatial orientation, memory formation and strategic pl...
-
What you'll need: A plastic comb (or an inflated balloon) A narrow stream of water from a tap Dry hair Instructions: Tu...
-
Aug. 26, 2013 — Where did the Chelyabinsk meteorite come from? As a meteoroid, it either collided with another body in the solar system ...
-
Dec. 13, 2013 — South Pole Telescope scientists have detected for the first time a subtle distortion in the oldest light in the universe,...
-
This image shows two of the galaxy clusters Aug. 1, 2013 — Our universe is filled with gobs of galaxies, bound together by gravity...
Recent Posts
Sample Text
Blog Archive
-
▼
2013
(421)
-
▼
November
(38)
- Mach 1000 Shock Wave Lights Supernova Remnant
- Archaeological Discoveries Confirm Early Date of B...
- Scientists Find Brain Region That Helps You Make U...
- Even If Emissions Stop, Carbon Dioxide Could Warm ...
- Colossal New Predatory Dino Terrorized Early Tyran...
- Does Obesity Reshape Our Sense of Taste?
- The Era of Neutrino Astronomy Has Begun
- Two Y Genes Can Replace the Entire Y Chromosome fo...
- Monster Gamma-Ray Burst in Our Cosmic Neighborhood
- Genomic Variant Associated With Sun Sensitivity, F...
- Brain Regions Can Be Specifically Trained With Vid...
- Computer Searches Web 24/7 to Analyze Images and T...
- Specially Designed Nanostructured Materials Can In...
- Black Holes Don't Make a Big Splash
- Neanderthal Viruses Found in Modern Humans
- Skeletal Remains of 24,000-Year-Old Boy Raise New ...
- Secrets of Mars' Birth Revealed from Unique Meteorite
- CT and 3-D Printers Used to Recreate Dinosaur Fossils
- World's Smallest FM Radio Transmitter
- Biologists Find an Evolutionary Facebook for Monke...
- The Big Male Nose: Why Men's Noses Are Bigger Than...
- Bacteria Recycle Broken DNA: Modern Bacteria Can A...
- Evidence Found for Granite On Mars: Red Planet Mor...
- Hubble Reveals First Scrapbook Pictures of Milky W...
- Astronomers Reveal Contents of Mysterious Black Ho...
- Better Batteries Through Biology? Modified Viruses...
- Evidence of 3.5-Billion-Year-Old Bacterial Ecosyst...
- Thin, Active Invisibility Cloak Demonstrated for F...
- Clay May Have Been Birthplace of Life On Earth, Ne...
- How Pigeons May Smell Their Way Home
- How Common Are Habitable Planets? One in Five Sun-...
- Fossil of Largest Known Platypus Discovered in Aus...
- Physicist Discovers Black Holes in Globular Star C...
- Life, but Not as We Know It: Rudimentary Form of L...
- Global Warming Led to Dwarfism in Mammals -- Twice
- Synaptic Transistor Learns While It Computes
- Surprising Variation Among Genomes of Individual N...
- Magnetic 'Force Field' Shields Giant Gas Cloud Dur...
-
▼
November
(38)
0 comments:
Post a Comment