Monday, 7 October 2013
On 07:19 by Asveth Sreiram No comments
Proteins are involved in nearly all functions of an animal cell, and consequently, are essential to all organisms. But before proteins can do their job, they must fold into the appropriate shapes that allow them to connect to and interact with other structures in the cell. In a paper published this week in the Proceedings of the National Academy of Sciences, Vera Gorbunova and Andrei Seluanov describe their discovery of the process in naked mole rats that leads to virtually perfect proteins.
"While this is basic research," said Gorbunova, "we hope our findings encourage further studies on better protein synthesis."
Their work focused on naked mole rat ribosomes -- the site of protein creation in the animal's cells -- and began by happenstance. Gorbunova and Seluanov were working with ribosome RNA (rRNA) when they made a discovery. After applying a dye to a sample, they studied it under ultraviolet light only to find three dark bands -- representing concentrations of different rRNA molecules -- not the two bands that are characteristic of all other animals, suggesting that there is a "hidden break" in the naked mole rat rRNA. Since rRNA is an essential part of the protein-creation mechanism, the two biologists decided to see if the broken rRNA affects the quality of naked mole rat proteins.
Ribosome RNA strands act as scaffolds on the ribosome, a protein synthesis machine. Changing the shape of the scaffold can have a profound effect on the organization of the ribosome parts.
Gorbunova and Seluanov discovered that the naked mole rat's rRNA scaffold is indeed unique. The rRNA strands split at two specific locations and discard the intervening segment. Instead of floating off on their own, the two remaining pieces from each strand stay close to each other and act as a scaffold on which ribosomal proteins are assembled to create a functional ribosome -- a molecular machine that puts amino acids together to create proteins. And the results are impressive.
When the ribosome connects amino acids together to create a protein a mistake is occasionally introduced when an incorrect amino acid is inserted. Gorbunova and Seluanov found that the proteins made by naked mole rat cells are up to 40 times less likely to contain such mistakes than the proteins made by mouse cells.
"This is important because proteins with no aberrations help the body to function more efficiently," said Seluanov.
The next step for the biologists is to split mouse rRNA in the same way to see if it would lead to improved protein creation.
The two biologists hope their work will eventually result in pharmaceutical treatments that modulate protein synthesis in humans, though any medical solution is a long way off.
Subscribe to:
Post Comments (Atom)
Search
Popular Posts
-
What you'll need: Baking Soda (make sure it's not baking powder) Vinegar A container to hold everything and avoid a big mess...
-
What you'll need: A plastic comb (or an inflated balloon) A narrow stream of water from a tap Dry hair Instructions: Tu...
-
Nov. 18, 2013 — Why do the faces of some primates contain so many different colors -- black, blue, red, orange and white -- that are mixe...
-
Jan. 8, 2014 — Today the Baryon Oscillation Spectroscopic Survey (BOSS) Collaboration announced that BOSS has measured the scale of the u...
-
Aug. 29, 2013 — It's a fiercely debated question amongst palaeontologists: was the giant 'terror bird', which lived in Europ...
-
Nov. 20, 2013 — A computer program called the Never Ending Image Learner (NEIL) is running 24 hours a day at Carnegie Mellon University, ...
-
Sep. 18, 2013 — NASA satellites may have missed more than 50% of the phytoplankton in the Southern Ocean, making it far more difficult to...
-
What is the unit of force? The SI unit of force is newton(N)
-
Sep. 17, 2013 — Human influences have directly impacted the latitude/altitude pattern of atmospheric temperature. That is the conclusion ...
-
Oct. 17, 2013 — Supermassive black holes: every large galaxy's got one. But here's a real conundrum: how did they grow so big? ...
Recent Posts
Sample Text
Blog Archive
-
▼
2013
(421)
-
▼
October
(35)
- Smart Neurons: Single Neuronal Dendrites Can Perfo...
- New Kit Predicts Most Common Lung Cancer Survival
- Bee Sting Allergy Could Be a Defense Response Gone...
- Fungus That Causes White-Nose Syndrome in Bats Pro...
- Monkey That Purrs Like a Cat Is Among New Species ...
- Ghostly Shape of 'Coldest Place in the Universe' R...
- Scientists Solve Mystery of Odd Patterns of Oxygen...
- Bees Underwent Massive Extinctions When Dinosaurs Did
- Unprecedented Arctic Warming: Average Summer Tempe...
- Need Different Types of Tissue? Just Print Them!
- Astronomers Discover the Most Distant Known Galaxy...
- Gilding the Gum Tree: Scientists Strike Gold in Le...
- How Did Supermassive Black Holes Grow So Big?
- Scientist Uncovers Internal Clock Able to Measure ...
- Gravitational Waves Help Us Understand Black-Hole ...
- Curiosity Confirms Origins of Martian Meteorites
- Extinct 'Mega Claw' Creature Had Spider-Like Brain
- New Light On Star Death: Super-Luminous Supernovae...
- Glowing Neurons Reveal Networked Link Between Brai...
- Software Uses Cyborg Swarm to Map Unknown Environs
- ALMA Probes Mysteries of Jets from Giant Black Holes
- How the Largest Star Known Is Tearing Itself Apart
- Astronomers Find Clues to Decades-Long Coronal Hea...
- World Ocean Systems Undermined by Climate Change b...
- Scientists Unravel Mechanisms in Chronic Itching
- Surprisingly Simple Scheme for Self-Assembling Robots
- Astronomers Discover Large 'Hot' Cocoon Around a S...
- Climate Puzzle Over Origins of Life On Earth
- Sieving Through 'Junk' DNA Reveals Disease-Causing...
- Discovery of Charged Droplets Could Lead to More E...
- New Fossils Push the Origin of Flowering Plants Ba...
- Breakthrough in Photonics Could Allow for Faster a...
- Better Protein Creation May Be Secret of Longevity...
- First Cloud Map of a Planet Beyond Our Solar System
- Cold, Salty and Promiscuous: Gene-Shuffling Microb...
-
▼
October
(35)
0 comments:
Post a Comment